A general view of pseudoharmonics and pseudoantiharmonics to calculate external arguments of Douady and Hubbard
نویسندگان
چکیده
Harmonics give us a compact formula and a powerful tool in order to calculate the external arguments of the last appearance hyperbolic components and Misiurewicz points of the Mandelbrot set in some particular cases. Antiharmonics seem however to have no application. In this paper, we give a general view of pseudoharmonics and pseudoantiharmonics, as a generalization of harmonics and antiharmonics. Pseudoharmonics turn out to be a more powerful tool than harmonics since they allow the calculation of external arguments of the Mandelbrot set in many more cases. Likewise, unlike antiharmonics, pseudoantiharmonics turn out to be a powerful tool to calculate external arguments of the Mandelbrot
منابع مشابه
Research Article Operating with External Arguments of Douady and Hubbard
The external arguments of the external rays theory of Douady and Hubbard is a valuable tool in order to analyze the Mandelbrot set, a typical case of discrete dynamical system used to study nonlinear phenomena. We suggest here a general method for the calculation of the external arguments of external rays landing at the hyperbolic components root points of the Mandelbrot set. Likewise, we prese...
متن کاملOperating with external arguments in the Mandelbrot set antenna
The external argument theory of Douady and Hubbard allows us to know both the potential and the field-lines in the exterior of the Mandelbrot set. Nonetheless, there are no explicit formulae to operate with external arguments, and the external argument theory is difficult to apply. In this paper we introduce some tools in order to obtain formulae to operate with external arguments in the Mandel...
متن کاملExternal arguments of Douady cauliflowers in the Mandelbrot set
Near to the cusp of a cardioid of the Mandelbrot set, except for the main cardioid, there is a sequence of baby Mandelbrot sets. Each baby Mandelbrot set is in the center of a Douady cauliflower, a decoration constituted by an infinity of minute Mandelbrot sets and Misiurewicz points linked by filaments. A Douady cauliflower appears to have a complicated structure, and how the external rays lan...
متن کاملCombinatorial characterization of sub-hyperbolic rational maps
In 1980’s, Thurston established a combinatorial characterization for post-critically finite rational maps among post-critically finite branched coverings of the two sphere to itself. A completed proof was written by Douady and Hubbard in their paper [A. Douady, J.H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993) 263–297]. This criterion ...
متن کاملRational External Rays of the Mandelbrot Set
We give a new proof that all external rays of the Mandelbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is di erent from the original one, given by Douady and Hubbard and re ned by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic depende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 213 شماره
صفحات -
تاریخ انتشار 2009